(f*g)(x)=f(x)*g(x)=(x+7)*[1/(x-13)]→(f*g)(x)=(x+7)/(x-13) (f*g)(x) is a rational function, then the denominator must be different of zero: x-13 ≠ 0 x-13 +13≠ 0+13 x ≠ 13
Then: Domain (f*g)(x)=R-{13}=(-Infinite, 13) U (13, Infinite) R: All the real numbers