a)
[tex]\bf \qquad \textit{Compound Interest Earned Amount}
\\\\
A=P\left(1+\frac{r}{n}\right)^{nt}
\quad
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{original amount deposited}\to &\$15000\\
r=rate\to 4.95\%\to \frac{4.95}{100}\to &0.0495\\
n=
\begin{array}{llll}
\textit{times it compounds per year}\\
\textit{twelve months, thus}
\end{array}\to &12\\
t=years\to &1
\end{cases}
\\\\\\
A=15000\left(1+\frac{0.0495}{12}\right)^{12\cdot 1}[/tex]
b)
[tex]\bf \qquad \textit{Compound Interest Earned Amount}
\\\\
A=P\left(1+\frac{r}{n}\right)^{nt}
\quad
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{original amount deposited}\to &\$15000\\
r=rate\to 4.95\%\to \frac{4.95}{100}\to &0.0495\\
n=
\begin{array}{llll}
\textit{times it compounds per year}\\
\textit{365 days, thus}
\end{array}\to &365\\
t=years\to &1
\end{cases}
\\\\\\
A=15000\left(1+\frac{0.0495}{365}\right)^{365\cdot 1}[/tex]
c)
[tex]\bf \qquad \textit{Compound Interest Earned Amount}
\\\\
A=P\left(1+\frac{r}{n}\right)^{nt}
\quad
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{original amount deposited}\to &\$15000\\
r=rate\to 4.95\%\to \frac{4.95}{100}\to &0.0495\\
n=
\begin{array}{llll}
\textit{times it compounds per year}\\
\textit{four quarters, thus}
\end{array}\to &4\\
t=years\to &1
\end{cases}
\\\\\\
A=15000\left(1+\frac{0.0495}{4}\right)^{4\cdot 1}[/tex]