Determine whether the sequence converges or diverges. How do you know if it converges or diverges? If it converges, give the limit.{ 5n−1 / n+1 }

Determine whether the sequence converges or diverges How do you know if it converges or diverges If it converges give the limit 5n1 n1 class=

Respuesta :

Given the sequence,

[tex](\frac{5n-1}{n+1})[/tex]

We can find the solution to the question below.

Explanation

1) The sequence converges.

2) This is because the limit of the sequence exists as n→∞.

We can find the limit below.

[tex]\begin{gathered} \lim_{n\to\infty\:}\left(\frac{5n-1}{n+1}\right) \\ divide\text{ the numerator and denominator by n} \\ \lim_{n\to\infty\:}\left(\frac{5-\frac{1}{n}}{1+\frac{1}{n}}\right) \\ Recall;\lim_{x\to a}\left[\frac{f\left(x\right)}{g\left(x\right)}\right]=\frac{\lim_{x\to a}f\left(x\right)}{\lim_{x\to a}g\left(x\right)},\:\quad\lim_{x\to a}g\left(x\right)0 \\ \frac{\lim_{n\to\infty\:}\left(5-\frac{1}{x}\right)}{\lim_{n\to\infty\:}\left(1+\frac{1}{x}\right)}=\frac{5}{1}=5 \end{gathered}[/tex]

Answer: The limit of the sequence is 5