Respuesta :

Explanation

We can use a right triangle and the below trigonometric ratios.

[tex]\begin{gathered} \cos(\theta)=\frac{\text{ Adjacent leg}}{\text{ Hypotenuse}} \\ \tan(\theta)=\frac{\text{ Opposite leg}}{\text{ Adjacent leg}} \end{gathered}[/tex]

In this case, we have:

[tex]\cos(\theta)=\frac{3}{5}=\frac{\text{Adjacent leg}}{\text{Hypotenuse}}[/tex]

As we can see, we need to know the value of the opposite leg. Since it is a right triangle, we can use the Pythagorean theorem formula.

[tex]\begin{gathered} a^2+b^2=c^2 \\ \text{ Where} \\ a\text{ and }b\text{ are the legs} \\ c\text{ is the hypotenuse} \end{gathered}[/tex]

Then, we have:

[tex]\begin{gathered} a=3 \\ b=? \\ c=5 \\ a^{2}+b^{2}=c^{2} \\ 3^2+b^2=5^2 \\ 9+b^2=25 \\ \text{ Subtract 9 from both sides} \\ 9+b^2-9=25-9 \\ b^2=16 \\ $\text{ Apply square root to both sides of the equation}$ \\ \sqrt{b^2}=\sqrt{16} \\ b=4 \end{gathered}[/tex]

Finally, we have:

Then, we can find the value of tan(θ):

[tex]\begin{gathered} \tan(\theta)=\frac{\text{Opposite leg}}{\text{Adjacentleg}} \\ \tan(\theta)=\frac{4}{3} \end{gathered}[/tex]Answer[tex]\tan(\theta)=\frac{4}{3}[/tex]

Ver imagen CaleelS145332
Ver imagen CaleelS145332