Respuesta :

we have the following

[tex]\sin \theta=\frac{4}{9}[/tex]

sin of an angle is the same as:

[tex]\sin \theta=\frac{opposite}{hypotenuse}[/tex]

therefore we can create the following right triangle:

we can calculate the adjacent side using the pythagorean theorem

[tex]h^2=a^2+b^2[/tex]

where h is the hypotenuse, a is the adjacent side and b the opposite side to the angle.

thus, the adjacent side is:

[tex]a=\sqrt[]{h^2-b^2}=\sqrt[]{9^2-4^2}=\sqrt[]{81-16}=\sqrt[]{65}[/tex]

Using that value, we can now calculate cos of the angle

[tex]\cos \theta=\frac{adjacent}{hypotenuse}[/tex][tex]\cos \theta=\frac{\sqrt[]{65}}{9}[/tex]

which can't be simplify, thus that is the answer for the exact value

Ver imagen HobbsC304930