Respuesta :

Answer:

a) 3/4

Explanation:

Part A

If triangles ABC and JKL are similar, then the ratio of the corresponding sides is:

[tex]\frac{AB}{JK}=\frac{BC}{KL}=\frac{AC}{JL}[/tex]

Substitute the given values:

[tex]\begin{gathered} \frac{AB}{JK}=\frac{27}{36}=\frac{3}{4} \\ \frac{BC}{KL}=\frac{36}{48}=\frac{3}{4} \\ \frac{AC}{JL}=\frac{21}{28}=\frac{3}{4} \end{gathered}[/tex]

Thus, the scale factor from △ABC to △JKL is 3/4.

Part B

Given that ABC and JKL are congruent, then:

[tex]\begin{gathered} \angle A\cong\angle J \\ \angle B\cong\angle K \\ \angle C\cong\angle L \end{gathered}[/tex]