Which choice is equivalent to the fraction below when x2 2? Hint: Rationalize the denominator and simplify. 4 O A. -2(&x-fx-2) O B. 2(x + √x-2) C. -2(x + x - 2) O D. 2(x - x - 2)

Respuesta :

Consider the given expression,

[tex]\frac{4}{\sqrt[]{x-2}-\sqrt[]{x}}[/tex]

Rationalize the denominator asfollows,

[tex]\frac{4}{\sqrt[]{x-2}-\sqrt[]{x}}\times\frac{\sqrt[]{x-2}+\sqrt[]{x}}{\sqrt[]{x-2}+\sqrt[]{x}}=\frac{4(\sqrt[]{x-2}+\sqrt[]{x})}{(\sqrt[]{x-2})^2-(\sqrt[]{x})^2}=\frac{4(\sqrt[]{x-2}+\sqrt[]{x})}{x-2-x}=-2(\sqrt[]{x-2}+\sqrt[]{x})[/tex]

The given option (c)