Respuesta :

Solution:

The question will be represented below as

To figure out the horizontal component (x), we will use the trigonometric ratio below

[tex]\begin{gathered} sin\theta=\frac{opp}{hyp} \\ \theta=35^0,opp=x,hyp=110 \end{gathered}[/tex]

By substituting the values, we will have

[tex]\begin{gathered} s\imaginaryI n\theta=\frac{opp}{hyp} \\ sin35=\frac{x}{110} \\ x=110\sin35^0 \\ x=63.1\text{ km/h} \end{gathered}[/tex]

Step 2:

To figure out the vertical component (y), we will use the trigonometric ratio below

[tex]\begin{gathered} \cos\theta=\frac{adj}{hyp} \\ \theta=35^0,adj=y,hyp=110 \end{gathered}[/tex]

By substituting the values, we will have

[tex]\begin{gathered} \cos(\theta)=\frac{adj}{hyp} \\ \cos35=\frac{y}{110} \\ y=110cos35^0 \\ y=90.1 \end{gathered}[/tex]

Hence,

The horizontal component is = 63.1 km/h

The vertical component is = 90.1 km/h

Ver imagen KendalynQ422542