21. A truck is driving N35oE at a speed of 110 km/h. Determine the components of the vector representing this force.

Solution:
The question will be represented below as
To figure out the horizontal component (x), we will use the trigonometric ratio below
[tex]\begin{gathered} sin\theta=\frac{opp}{hyp} \\ \theta=35^0,opp=x,hyp=110 \end{gathered}[/tex]By substituting the values, we will have
[tex]\begin{gathered} s\imaginaryI n\theta=\frac{opp}{hyp} \\ sin35=\frac{x}{110} \\ x=110\sin35^0 \\ x=63.1\text{ km/h} \end{gathered}[/tex]Step 2:
To figure out the vertical component (y), we will use the trigonometric ratio below
[tex]\begin{gathered} \cos\theta=\frac{adj}{hyp} \\ \theta=35^0,adj=y,hyp=110 \end{gathered}[/tex]By substituting the values, we will have
[tex]\begin{gathered} \cos(\theta)=\frac{adj}{hyp} \\ \cos35=\frac{y}{110} \\ y=110cos35^0 \\ y=90.1 \end{gathered}[/tex]Hence,
The horizontal component is = 63.1 km/h
The vertical component is = 90.1 km/h