Answer:
g(x)=3x+11
Explanation:
Given that the slope of g(x) = 3
g(-4) = -1.
This means that when x=-4, y=-1
A point on the line g(x) is (-4, -1)
To determine the equation of the line, we use the point-slope form given below:
[tex]y-y_1=m(x-x_1)[/tex][tex]\begin{gathered} \text{Slope,m}=3 \\ \mleft(x_1,y_1\mright)=\mleft(-4,-1$)$\mright. \end{gathered}[/tex]Substituting, we have:
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y-(-1)=3(x-(-4)_{}) \\ y+1=3(x+4) \\ y=3x+12-1 \\ y=3x+11 \end{gathered}[/tex]The equation for g(x) is:
[tex]g(x)=3x+11[/tex]