Given,
The charge generated, q=0.0012 C
The energy of the Van der Graaf generator, E=1093 J
The time it takes for the generator to produce the given amount of charge, t=.005 s
The current is given by the time rate of the flow of charges. That is,
[tex]I=\frac{q}{t}\text{ }\rightarrow\text{ (i)}[/tex]The voltage is calculated using the formula,
[tex]V=\frac{E}{q}\text{ }\rightarrow\text{ (ii)}[/tex]From Ohm's law, the voltage is given by,
[tex]\begin{gathered} V=IR \\ R=\frac{V}{I}\text{ }\rightarrow\text{ (iii)} \end{gathered}[/tex]On substituting equation (i) and (ii) in equation (iii),
[tex]\begin{gathered} R=\frac{\frac{E}{q}}{\frac{q}{t}} \\ =\frac{Et}{q^2} \end{gathered}[/tex]On substituting the known values,
[tex]\begin{gathered} R=\frac{1093\times0.005}{0.0012^2} \\ =3.8\times10^6\text{ }\Omega \end{gathered}[/tex]Thus the resistance of the air gap is 3.8×10⁶ Ω