Please!!Find the value of each variable. Write theequations and solve showing ALL the work.If an answer is not a whole number, leaveit in simplest radical form.

The greater triangle and the smaller ones (the two triangles inside the original one, that share the side y) are similar triangles, then we can formulate the following expressions:
• For the larger triangle and the triangle on the left
[tex]\frac{z}{9}=\frac{5}{z}[/tex]From this equation, we can solve for z, to get:
[tex]\begin{gathered} \frac{z}{9}\times z=\frac{5}{z}\times z \\ \frac{z\times z}{9}=5\times\frac{z}{z} \\ \frac{z^2}{9}=5\times1 \\ \frac{z^2}{9}=5 \\ z^2=5\times9 \\ z^2=45 \\ z=\sqrt[]{45} \\ z=3\sqrt[]{5} \end{gathered}[/tex]Then, z equals 3√5
• Similarly, with the larger triangle and the one on the right:
[tex]\begin{gathered} \frac{x}{9}=\frac{4}{x} \\ \end{gathered}[/tex]From this expression, we can solve for x, like this:
[tex]\begin{gathered} \frac{x}{9}=\frac{4}{x} \\ \frac{x^2}{9}=4 \\ x^2=4\times9 \\ x^2=36 \\ x=\sqrt[]{36} \\ x=6 \end{gathered}[/tex]Then, x equals 6
• With the triangles on the right and on the left:
[tex]\frac{y}{4}=\frac{5}{y}[/tex]Solving for y, we get:
[tex]\begin{gathered} \frac{y}{4}=\frac{5}{y} \\ \frac{y^2}{4}=5 \\ y^2=5\times4 \\ y^2=20 \\ y=\sqrt[]{20} \\ y=2\sqrt[]{5} \end{gathered}[/tex]Then, y equals 2√5