Find csco, cose, and tan , where is the angle shown in the figure.Give exact values, not decimal approximations.

Let 'a' represent the unknown side of the triangle.
To solve for the unknown side, we will apply the Pythagoras theorem.
[tex]a^2=b^2+c^2^{}[/tex][tex]\begin{gathered} b=4 \\ c=5 \end{gathered}[/tex][tex]\begin{gathered} a^2=4^2+5^2 \\ a=\sqrt[]{16+25} \\ a=\sqrt[]{41} \end{gathered}[/tex]Let solve for cscθ
[tex]\begin{gathered} \csc \theta=\frac{1}{\sin \theta} \\ \sin \theta=\frac{4}{\sqrt[]{41}} \\ \text{Therefore,} \\ \csc \theta=\frac{1}{\frac{4}{\sqrt[]{41}}}=\frac{\sqrt[]{41}}{4} \end{gathered}[/tex]Let us solve for cosθ
[tex]\cos \theta=\frac{5}{\sqrt[]{41}}[/tex][tex]\begin{gathered} \frac{5}{\sqrt[]{41}} \\ \text{Rationalising} \\ \frac{5}{\sqrt[]{41}}\times\frac{\sqrt[]{41}}{\sqrt[]{41}}=\frac{5\sqrt[]{41}}{41} \end{gathered}[/tex][tex]\cos \theta=\frac{5\sqrt[]{41}}{41}[/tex]Let us solve for tanθ
[tex]\tan \theta=\frac{4}{5}[/tex]