Respuesta :

Answer:

The solutions are:

[tex]y=4[/tex]

and

[tex]y=0[/tex]

Explanation:

Given the equation:

[tex]|4-2y|+5=9[/tex]

To solve for y:

Subract 5 from both sides

[tex]\begin{gathered} |4-2y|+5-5=9-5 \\ |4-2y|=4 \end{gathered}[/tex]

Next, the absolute value always has two solutions:

[tex]4-2y=4[/tex]

and

[tex]4-2y=-4[/tex]

We need to solve each of these equations.

1.

[tex]\begin{gathered} 4-2y=4 \\ \text{Subtract 4 from both sides} \\ 4-2y-4=4-4 \\ -2y=0 \\ y=\frac{0}{-2}=0 \end{gathered}[/tex]

2.

[tex]\begin{gathered} 4-2y=-4 \\ \text{Subtract 4 from both sides} \\ 4-2y-4=-4-4 \\ -2y=-8 \\ \text{Divide both sides by -2} \\ y=\frac{-8}{-2}=4 \end{gathered}[/tex]