Respuesta :

We have to calculate the area and perimeter of ABC.

Area:

We can calculate the area by substracting from the area of the big triangle ABD the area of the little triangle BCD. Both are right triangles.

The area of ABD is:

[tex]A_{\text{ABD}}=\frac{b\cdot h}{2}=\frac{(15+5)\cdot12}{2}=\frac{20\cdot12}{2}=\frac{240}{2}=120[/tex]

The area of BCD is:

[tex]A_{\text{BCD}}=\frac{b\cdot h}{2}=\frac{5\cdot12}{2}=\frac{60}{2}=30[/tex]

Then, the area of ABC is:

[tex]A_{\text{ABC}}=A_{\text{ABD}}-A_{\text{BCD}}=120-30=90[/tex]

The area of ABC is 90 cm^2.

Perimeter:

We calculate the perimeter by adding the length of the three sides. We know only 2 of the sides, so we have to calculate the other one (BC).

The length of BC can be calculated using Pythagorean theorem for the triangle BCD, so we can write:

[tex]\begin{gathered} BC^2=CD^2+BD^2=5^2+12^2=25+144=169 \\ BC=\sqrt[]{169}=13 \end{gathered}[/tex]

Now, we can calculate the perimeter as:

[tex]P_{\text{ABC}}=AB+BC+AC=25+13+15=53[/tex]

The perimeter is 53 cm.

Ver imagen ViviI746494