In the figure shown, what is mzA? Explain.57°; AABC is an isosceles triangle with base angles A and C. m2A = mc.B. 66; AABC is an isosceles triangle with base angles B and C. m2B = m_C = 57, and m2A + m2B + m2 = 180.C. 57. AABC is an equilateral triangle.

In the figure shown what is mzA Explain57 AABC is an isosceles triangle with base angles A and C m2A mcB 66 AABC is an isosceles triangle with base angles B and class=

Respuesta :

Since ABC is an isosceles triangle with sides AB=AC, then the angle ABC is the same as ACB, an it's equal to 57º.

Since all three internal angles should add up to 180º, then the angle BAC should have a measure of 180-2(57)=66º.