Respuesta :

We know that the interior angles have to add to 180°, then we have that:

[tex]\begin{gathered} C=180-69-32 \\ C=79 \end{gathered}[/tex]

Hence angle C=79°.

Now that we know the angle C we can use the law of sines to find a; the law of sines states that:

[tex]\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]

From this we have the equation:

[tex]\frac{\sin A}{a}=\frac{\sin C}{c}[/tex]

Plugging the values given and solving for a we have:

[tex]\begin{gathered} \frac{\sin32}{a}=\frac{\sin 79}{5.7} \\ a=(5.7)\frac{\sin 32}{\sin 79} \\ a=3.08 \end{gathered}[/tex]

Therefore a=3.08