If the vertices of three squares are connected to form a right triangle, the sum of the areas of the two smaller squares is the same as the area of the largest square. Based on this statement and the model below, what is the area of square B? (Figure is not drawn to scale.) B 8 m 2 289 m

If the vertices of three squares are connected to form a right triangle the sum of the areas of the two smaller squares is the same as the area of the largest s class=

Respuesta :

One square has area 289 square meters, and the other has area

[tex]8m\times8m=64m^2[/tex]

Then, since the sum of the two areas of the smaller squares is equal to the area of the big square, we have

[tex]\begin{gathered} B+64m^2=289m^2 \\ B=289m^2-64m^2 \\ B=225m^2 \end{gathered}[/tex]

Otras preguntas