Write an equation (a) in slope-intercept form and (b) in standard form for the line passing through (1,6) and perpendicular to 3 x + 7y = 1.a) The equation of the line in slope-intercept form is   enter your response here

Respuesta :

The equation

[tex]3x+7y=1[/tex][tex]7y=-3x+1[/tex][tex]y=\frac{-3x}{7}+\frac{1}{7}[/tex]

has slope -3/7.

The product of perpendicular lines must be -1, so the slope of the new equation must be:

[tex]m\cdot-\frac{3}{7}=-1[/tex][tex]m=\frac{-1\cdot7}{-3}=\frac{7}{3}[/tex]

The line with that slope and that passes throught (1,6) is:

[tex](y-6)=m(x-1)[/tex][tex](y-6)=\frac{7}{3}(x-1)[/tex][tex]y-6=\frac{7}{3}x-\frac{7}{3}[/tex][tex]y=\frac{7}{3}x-\frac{7}{3}+6[/tex][tex]y=\frac{7}{3}x-\frac{7}{3}+\frac{18}{3}[/tex][tex]y=\frac{7}{3}x+\frac{11}{3}[/tex]

The following graph shows both equations:

[tex]y=\frac{7}{3}x+\frac{11}{3}[/tex][tex]3\cdot y=(\frac{7}{3}x+\frac{11}{3})\cdot3[/tex][tex]3y=7x+11[/tex][tex]-7x+3y=11[/tex]

Ver imagen ToribioY725762