Using data from the previous table, construct an exponential model for this situation.A ( t ) =What will be the value when t=8, rounded to 2 decimal places?

Answer
• Exponential model
[tex]A(t)=13.60(1+0.25)^{t}[/tex][tex]A(8)\approx81.06[/tex]Explanation
The exponential model equation can be given by:
[tex]A(t)=C(1+r)^t[/tex]where C is the initial value, r is the rate of growth and t is the time.
We can get the initial value by evaluating in the table when t = 0. In this case the value A(0) = 13.60. Then our equation is:
[tex]A(t)=13.60(1+r)^t[/tex]Now we have to get r by choosing any point and solving for r. For example, (3, 26.56). By replacing the values and solving we get:
[tex]26.56=13.60(1+r)^3[/tex][tex]\frac{26.56}{13.60}=(1+r)^3[/tex][tex](1+r)^3=\frac{26.56}{13.60}[/tex][tex]\sqrt[3]{(1+r)^3}=\sqrt[3]{\frac{26.56}{13.60}}[/tex][tex]1+r=\sqrt[3]{\frac{26.56}{13.60}}[/tex][tex]r=\sqrt[3]{\frac{26.56}{13.60}}-1\approx0.2500[/tex]Thus, our rate is 0.25, and we can add it to our equation:
[tex]A(t)=13.60(1+0.25)^t[/tex]Finally, we evaluate t = 8:
[tex]A(8)=13.60(1+0.25)^8=81.06[/tex]