Respuesta :

[tex]y=-\frac{4}{9}x-\frac{7}{9}[/tex]

EXPLANATION

Given two points of a line, we can find the the equation of that line using the steps below:

• Step 1

Determine the slope of the line, using the formula below:

[tex]\text{slope(m)}=\frac{y_2-y_1}{x_2-x_1}[/tex]

The points given are (-4, 1) and (5, -3). This implies that the coordinates are

x₁= -4 y₁=1 x₂=5 y₂=-3

Substitute the values into the formula and simplify.

[tex]m=\frac{-3-1}{5+4}=-\frac{4}{9}[/tex]

• Step 2

Determine the y-intercept(b) of the line.

Substitute x₁= -4 y₁=1 and m=-4/9 into y=mx + b and solve for intercept(b).

1 = (-4/9)(-4) + b

[tex]1=\frac{16}{9}+b[/tex]

Subtract 16/9 from both-side of the equation.

[tex]b=1-\frac{16}{9}[/tex]

[tex]b=\frac{9-16}{9}=-\frac{7}{9}[/tex]

The intercept (b) = -7/9

• Step 3

Form the equation by substituting the value of the slope and intercept into y=mx + b.

Hence, the equation of the line is:

[tex]y=-\frac{4}{9}x-\frac{7}{9}[/tex]