Suppose that (x, -8/17) is a point in quadrant IV lying on the unit circle.

Find x. Write the exact value, not a decimal approximation.

Can someone help me solve this problem?

Respuesta :

Since the point lies on the unit circle, it satisfies

[tex]x^2+\left(-\dfrac8{17}\right)^2=x^2+\left(\dfrac8{17}\right)^2=1[/tex]

Solving for [tex]x[/tex] gives two possible solutions:

[tex]x^2=1-\left(\dfrac8{17}\right)^2[/tex]
[tex]x=\pm\sqrt{1-\left(\dfrac8{17}\right)^2}[/tex]

Given that [tex]x[/tex] is in quadrant IV, you know that its value must be positive, so

[tex]x=\sqrt{1-\left(\dfrac8{17}\right)^2}=\sqrt{\dfrac{225}{289}}[/tex]