Respuesta :

Answer:

x = 31.3°

Step-by-step explanation:

[tex]cos (A) = \frac{b^{2} + c^{2} - a^{2} }{2bc} [/tex]

here a = 8 ,  b = 11 , c = 15

using the formula:

cos(x) = (11² + 15² - 8²) / ( 2 * 11 * 15)

cos(x) = [tex]\frac{47}{55} [/tex]

x = [tex]cos^{-1} (\frac{47}{55} )[/tex]

x = 31.3°