Respuesta :

Answer:

[tex]= 2x^{-6}y ^{21}\\\\[/tex]

Step-by-step explanation:

Given the indicinal expression  (2x^2 y^-2 / y^5)^-3

In indices

[tex](x^m)^n = x^{mn[/tex]

Applying to solve the question

[tex](2x^2 y^{-2} / y^5)^{-3}\\\\= \frac{2x^{-6}y^6}{y^{-15}}\\= 2x^{-6} * \frac{y^6}{y^{-15}} \\= 2x^{-6} * y ^{6-(-15)}\\= 2x^{-6} * y ^{6+15}\\= 2x^{-6} * y ^{21}\\= 2x^{-6}y ^{21}\\\\[/tex]