Respuesta :

Answer:

3234

Step-by-step explanation:

The series is arithmetic with a common difference = d = 6

First we need to find the 33rd term.  Use the formula [tex]a_{n} = a_{1} + (n - 1)d[/tex] where n = 33 and [tex]a_{1} = 2[/tex]

[tex]a_{33} = 2 + (33 - 1)6 = 2 + 32(6) = 194[/tex]

Now the formula for the sum of an arithmetic series is [tex]S_{n} = \frac{n(a_{1} + a_{n} )}{2}[/tex]

So, [tex]S_{33} = \frac{33(2 + 194)}{2}[/tex]

          = [tex]\frac{33(196)}{2}[/tex]

          = 3234