Answer:
t = 909.1 s
Explanation:
[tex]p_{o} =p_{f} = (m_{shoes} * v_{shoes}) +M_{Dav} * v_{D} = 0 (1)[/tex]
[tex]v_{D} = \frac{-(m_{shoes}*v_{shoes})}{M_{Dav}} = \frac{-(0.15kg*2.0m/s)}{55 kg}} = -0.0055 m/s (2)[/tex]
[tex]t = \frac{x_{f}- x_{o} }{v_{D} } = \frac{-5m}{-0.0055m/s} = 909.1 s (3)[/tex]