Given the exponential equation 3* = 243, what is the logarithmic form of the equation in base 10? (5 points)

log, 243

log, 3

log, 3

log, 243

log,03

log, 243

log, 243

Respuesta :

Answer:

[tex]x = \frac{log\ 243}{log\ 3}[/tex]

Step-by-step explanation:

Given

[tex]3^x = 243[/tex]

Required

Express as a logarithm

[tex]3^x = 243[/tex]

Take log of both sides

[tex]log\ 3^x = log\ 243[/tex]

Apply the following law of logarithm

[tex]log\ a^b = b\ log\ a[/tex]

So, the expression becomes:

[tex]log\ 3^x = log\ 243[/tex]

[tex]x\ log\ 3 = log\ 243[/tex]

Divide both sides by log 3

[tex]\frac{x\ log\ 3}{log\ 3} = \frac{log\ 243}{log\ 3}[/tex]

[tex]x = \frac{log\ 243}{log\ 3}[/tex]

Hence, the expression in base 10 is:

[tex]x = \frac{log\ 243}{log\ 3}[/tex] or [tex]x = \frac{log_{10}\ 243}{log_{10}\ 3}[/tex]