Respuesta :
Answer:
Step-by-step explanation:
[tex]y=-2sin (\frac{2\pi (t+1)} {7})+5\\Height ~is~maximum~\\if sin (\frac{2\pi (t+1)}{7} )=-1\\or~ \frac{2\pi (t+1)}{7} =\frac{3 \pi }{2} \\t+1=\frac{3\pi }{2} \times \frac{7}{2\pi } =\frac{21}{4} \\t=\frac{21}{4} -1=\frac{17}{4} =4.25 ~seconds.[/tex]
The weight reaches its maximum height at 4.25 seconds.
What is maximum height?
'The maximum height of the object is the highest vertical position along its trajectory.'
According to the given problem,
y = -2sin ([tex]\frac{2\pi ( t + 1 )}{7}[/tex]) + 5
For maximum height,
 sin ([tex]\frac{2\pi ( t + 1 )}{7}[/tex]) = -1
⇒ [tex]\frac{2\pi ( t + 1 )}{7}[/tex] = [tex]sin^{-1} (-1)[/tex]
⇒  [tex]\frac{2\pi ( t + 1 )}{7}[/tex] = [tex]\frac{3\pi }{2}[/tex]
⇒ [tex]t +1=\frac{7 * 3\pi }{2 *2\pi }[/tex]
⇒ [tex]t +1[/tex] = [tex]\frac{21}{4}[/tex]
⇒ [tex]t = \frac{21}{4} -1[/tex]
⇒ t = [tex]\frac{17}{4}[/tex]
⇒ t = [tex]4.25[/tex] seconds.
Hence, we can conclude that at t = 4.25 seconds, the weight reaches its maximum height.
Learn more about maximum height here: https://brainly.com/question/6261898
#SPJ2