Find the average rate of change of the function from [tex]x_{1}[/tex]= 1 to [tex]x_{2}[/tex] = 5.​
Function = [tex]x^{2}[/tex] - 4x + 10

Respuesta :

leena

Hi there!

[tex]\large\boxed{\text{Average rate} = 2}[/tex]

Use the following equation to solve:

[tex]\text{Average rate} = \frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{1}}[/tex]

Solve for the y-values of the equation at the given x values:

f(1) = 1² - 4(1) + 10 = 7

f(5) = 5² - 4(5) + 10 = 15

Plug  the solved values into the equation:

[tex]\text{Average rate} = \frac{15 - 7}{5-1}[/tex]

Simplify:

[tex]\text{Average rate} = \frac{8}{4} = 2[/tex]