A 1500 kg car is being lifted by a hydralic jack attached to a flat plate. Underneath the plate is a pipe with a top radius of 24 cm at the top and 2 cm at the bottom. To generate an upward acceleration for the car of 1.0 m/s^2, how much force must be applied to the small end of the pipe?

Respuesta :

Answer:

The force is [tex]F =102.34 \  N [/tex]

Explanation:

From the question we are told that

   The mass of the car is  [tex]m_c  =  1500\  kg[/tex]  

   The top radius of the pipe is [tex]r_t =  24 \  cm  =0.24 \ m[/tex]

    The bottom radius is  [tex]r_b  =  2 \ cm  =  0.02 \ m[/tex]

 Generally the area of the small end of the pipe is  

      [tex]A_2 =  \pi  r_b^2[/tex]

=>    [tex]A_2 =  3.142 * 0.02 ^2[/tex]  

=>    [tex]A_2 =  0.00126\ m^2 [/tex]  

Generally the pressure in the pipe is mathematically represented as

     [tex]P =  \frac{F}{A_1}[/tex]

Here [tex]A_1[/tex]  is the area of the larger opening of the pipe and this is mathematically represented as

     [tex]A_1  =  \pi  *  r^2_t[/tex]

=>   [tex]A_1  = 3.142  * 0.24^2[/tex]

=>   [tex]A_1  = 0.18098 \ m^2[/tex]

Also  F is the force in the  at the larger opening(the top) of the pipe which mathematically evaluated as

        [tex]F =  m  *  g[/tex]

=>      [tex]F =  1500 *  9.8[/tex]

=>      [tex]F =  14700 \ N [/tex]

So

    [tex]P =  \frac{14700}{0.18098}[/tex]

     [tex]P = 81224.44 \ N / m^2[/tex]

Generally the force at the smaller opening of the pipe is  

     [tex]F =  P  *  A_2[/tex]

=>   [tex]F =  81224.44  *0.00126[/tex]

=>   [tex]F =102.34 \  N [/tex]