Respuesta :
Answer:
[tex] \huge{ \bold{ \boxed{ \tt{ \frac{11}{2} }}}}[/tex]
Step-by-step explanation:
[tex] \text{Let \: the \: points \: be \: A\: and \: B} [/tex]
[tex] \text{A \: ( - 4 \:, 7 \: )} \longrightarrow \: \text{(x1 \:, y1)}[/tex]
[tex] \text{B \: ( \: - 6 \:, - 4 \: )} \longrightarrow \text{(x2 \:, y2)}[/tex]
[tex] \underline{ \text{Finding \: the \: slope} }: [/tex]
[tex] \boxed{ \sf{slope = \frac{y2 - y1}{x2 - x1} }}[/tex]
[tex]↣ \: \sf{slope = \frac{ - 4 - 7}{ - 6 - ( - 4)} }[/tex]
[tex] \underline{ \text{Remember}} : [/tex]
- [tex] \text{ \: ( + ) * ( + ) = ( + )}[/tex]
- [tex] \text{( + ) \: * \: ( - ) = ( - )}[/tex]
- [tex] \text{( - ) \: * \: ( - ) = ( + )}[/tex]
- [tex] \text{( - ) \: * \: ( + ) = ( - )}[/tex]
[tex] \sf{↣ \: slope \: = \: \frac{ - 4 - 7}{ - 6 + 4}} [/tex]
[tex] \underline{ \text{Remember}}: [/tex]
- The positive integers are always added but posses the positive ( + ) sign.
- The negative integers always added but posses the negative ( - ) sign.
- The negative and positive integers are always subtracted but posses the sign of the bigger integer.
[tex] \sf{↣ \: slope = \frac{ - 11}{ - 2} }[/tex]
[tex] \sf{↣ \: slope \: = \frac{ \cancel{ - } \: 11}{ \cancel{ - } \: 2} }[/tex]
[tex] \sf{↣ \: slope \: = \frac{11}{2} }[/tex]
[tex] \text{Hope \: I \: helped!}[/tex]
[tex] \text{Best \: regards!}[/tex]
~[tex] \text{TheAnimeGirl}[/tex]