Which expression represents the number −3i^4+2i^3+2i^2+\sqrt(-9) rewritten in a+bi form?
A) −1−i
B)−1+5i
C)−5+i
D)−5−5i
E)−5−i

Respuesta :

Answer:  Option C

[tex]-5+i[/tex]

Step-by-step explanation:

We have the following complex number

[tex]-3i^4+2i^3+2i^2+\sqrt{-9}[/tex]

Remember that by definition [tex]i=\sqrt{-1}[/tex]  so [tex]i^2 = -1[/tex]

Then we simplify the expression:

[tex]-3(i^2)^2+2(i^2*i)+2i^2+\sqrt{9}*\sqrt{-1}[/tex]

[tex]-3(-1)^2+2((-1)*i)+2(-1)+\sqrt{9}*i[/tex]

[tex]-3-2i-2+3*i[/tex]

[tex]-5+i[/tex]

The answer is the option C