Respuesta :

Answer:

95.3 grams.

Explanation:

Relative atomic mass data from a modern periodic table:

  • Na: 22.990;
  • O: 15.999.

How many moles of Na are consumed?

[tex]M(\mathrm{Na}) = \rm 22.990\; g\cdot mol^{-1}[/tex].

[tex]\displaystyle n(\mathrm{Na}) = \frac{m(\mathrm{Na})}{M(\mathrm{Na})} = \rm \frac{70.7\; g}{22.990\;g\cdot mol^{-1}}=3.07525\;mol[/tex].

How many moles of [tex]\mathrm{Na_2 O}[/tex] formula units will be produced?

Consider the ratio between the coefficient of [tex]\mathrm{Na_2 O}[/tex] and that of [tex]\mathrm{Na}[/tex] in the equation:

[tex]\displaystyle \frac{n(\mathrm{Na_2 O})}{n(\mathrm{Na})} = \frac{2}{4} = \frac{1}{2}[/tex].

As a result,

[tex]\displaystyle n(\mathrm{Na_2 O}) = n(\mathrm{Na}) \cdot \frac{n(\mathrm{Na_2 O})}{n(\mathrm{Na})} = \rm \frac{1}{2}\times 3.07525\;mol = 1.53763\; mol[/tex].

What will be the mass of that many [tex]\mathrm{Na_2 O}[/tex]?

Formula mass of [tex]\mathrm{Na_2 O}[/tex]:

[tex]M(\mathrm{Na_2 O}) = \rm 2\times 22.990 + 15.999 = 61.979\; g\cdot mol^{-1}[/tex].

[tex]m(\mathrm{Na_2 O}) = n(\mathrm{Na_2 O})\cdot M(\mathrm{Na_2 O}) = \rm 1.53763\; mol\times 61.979\; g\cdot mol^{-1} \approx 95.3\; g[/tex].

Answer: 95,3 g. would be produced, if the mass of Na = 70,7 g.